Skip Nav Destination
Article navigation
Volume 5, Issue 5
May 1998
The 39th annual meeting of division of plasma physics of APS
17-21 Nov 1997
Pittsburgh, Pennsylvania (USA)
Research Article| May 01 1998
George Caryotakis
George Caryotakis
Stanford Linear Accelerator Center, Stanford University, P.O. Box 4349, Stanford, California 94309
Search for other works by this author on:
This Site
Phys. Plasmas 5, 1590–1598 (1998)
Article history
Received:
November 24 1997
Accepted:
January 05 1998
-
- Views Icon Views
- Article contents
- Figures & tables
- Video
- Audio
- Supplementary Data
- Peer Review
- Tools Icon Tools
Cite Icon Cite
- Search Site
Citation
George Caryotakis; The klystron: A microwave source of surprising range and endurance. Phys. Plasmas 1 May 1998; 5 (5): 1590–1598. https://doi.org/10.1063/1.872826
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
This year marks the 60th anniversary of the birth of the klystron at Stanford University. The tube was the first practical source of microwaves and its invention initiated a search for increasingly more powerful sources, which continues to this day. This paper reviews the scientific uses of the klystron and outlines its operating principles. The history of the device is traced from its scientific beginnings to its role in WWII and the Cold War, its subsequent decline in use for military systems, and to its current resurgence as the key component in a major accelerator project. Finally, the paper describes the development of a modular klystron, which may someday power future accelerators at millimeter wavelengths.
REFERENCES
1.
B. Richter, “The SLAC Linear Collider,” Proceedings of the 11th International Conference on High-Energy Accelerators, Geneva Switzerland, 1980, p. 168–187.
2.
“DOE Makes Tentative Tritium Decision,” The Energy Daily, Vol. 23, No. 193, October 11, 1995.
3.
H. S. Deaven and K. C. D. Chan, Computer Codes for Particle Accelerator Design and Analysis (Los Alamos National Laboratory, Los Alamos, New Mexico), p. 35–56.
4.
Ivan Linscott, Stanford University (private communication).
5.
J. C. Slater, Microwave Electronics (Van Nostrand, New York, 1950), p. 226.
6.
J. R. Pierce, Travelling-Wave Tubes (Van Nostrand, New York, 1950).
7.
J. C. Slater, Microwave Electronics (Van Nostrand, New York, 1950), p. 187.
8.
9.
L. F. Broadway et al., IEEE J. 93, Part 3A (1946).
10.
H. Döring, Funkgeschichte, Nr. 80 (1991), p. 5.
11.
W. W. Hansen, J. Appl. Phys. October, 654, (1938).
12.
W. W. Hansen, J. Appl. Phys. (1938).
13.
Russell Varian notebook, May-July, 1937 entries, National Archives, Washington, DC.
14.
Russell Varian notebook, May-July, 1937 entries, National Archives, Washington, DC.
15.
R. H. Varian, U.S. Patent No. 2,242,275 (Applied for, October 11, 1937).
16.
L. N. Ridenour, Radar System Engineering (McGraw Hill, New York, 1947), p. 414.
17.
R. Buderi, The Invention that Changed the World (Simon & Schuster, New York, 1996), p. 82.
18.
J. C. Slater, Microwave Electronics (van Nostrand, New York, 1950), p. 258.
19.
J. R. Pierce, Theory and Design of Electron Beams (Van Nostrand, New York, 1950), p. 258.
20.
M. Chodorow E. L. Ginzton W. W. Hansen R. L. Kyhe P. B. Neal W. K. H. Panofsky
Rev. Sci. Instrum.
26
,
134
(
1955
).
21.
J. F. Gittins, Power Travelling-Wave Tubes (Elsevier, New York, 1965), p. 56.
22.
J. F. Gittins, Power Travelling-Wave Tubes (Elsevier, New York, 1965), p. 67.
23.
R. Buderi, The Invention that Changed the World (Simon & Schuster, New York, 1996), p. 54.
24.
25.
W. R. Luebke G. Caryotakis
Microw. J.
,
43
(
1966
).
26.
R. Warnecke and P. Guénard, Les Tubes Electroniques a Commande par Modulation de Vitesse (Gauthier-Villars, Paris, 1951) p. 726.
27.
J. Benford and J. Swegle, High Power Microwaves (Artech House, Boston 1992).
28.
G. T. Konrad, “High Power RF Klystrons for Linear Accelerators,” Invited paper, Linear Accelerator Conference, Darmstadt, West Germany, May, 1984.
29.
European Laboratory for Particle Physics (Geneva Switzerland), Large Electron Positron.
30.
G. Caryotakis, “Development of X-Band Klystron Technology at SLAC,” Invited paper, Particle Accelerator Conference, Vancouver, B.C., July, 1997.
31.
E. W. Becker W. Ehrfeld J. Hagmann A. Maner D. Münchmeyer
Microelectron. Eng.
4
,
35
(
1986
).
This content is only available via PDF.
© 1998 American Institute of Physics.
1998
American Institute of Physics
You do not currently have access to this content.
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Reset password
Register
Sign in via your Institution
Pay-Per-View Access
$40.00
Buy This Article
Citing articles via
Sign up for alerts
- Most Read
- Most Cited
Development of steady-state fusion reactor by Helical Fusion
J. Miyazawa, T. Goto
Progress toward fusion energy breakeven and gain as measured against the Lawson criterion
Samuel E. Wurzel, Scott C. Hsu
Preface to special issue: Private fusion research: Opportunities and challenges in plasma science
M. Greenwald, U. Shumlak, et al.